254 research outputs found

    Barkhausen noise in soft amorphous magnetic materials under applied stress

    Full text link
    We report experimental measurements of Barkhausen noise on Fe_{64}Co_{21}B_{15} amorphous alloy under tensile stress. We interpret the scaling behavior of the noise distributions in terms of the depinning transition of the domain walls. We show that stress induced anisotropy enhance the effect of short-range elastic interactions that dominate over long-range dipolar interactions. The universality class is thus different from the one usually observed in Barkhausen noise measurements and is characterized by the exponents \tau = 1.3 and \alpha = 1.5, for the decay of the distributions of jump sizes and durations.Comment: 6 pages, 3 .eps figures. Submitted to the 43rd Magnetism and Magnetic Materials Conference (J. Appl. Phys.

    Hysteresis and noise in ferromagnetic materials with parallel domain walls

    Full text link
    We investigate dynamic hysteresis and Barkhausen noise in ferromagnetic materials with a huge number of parallel and rigid Bloch domain walls. Considering a disordered ferromagnetic system with strong in-plane uniaxial anisotropy and in-plane magnetization driven by an external magnetic field, we calculate the equations of motion for a set of coupled domain walls, considering the effects of the long-range dipolar interactions and disorder. We derive analytically an expression for the magnetic susceptivity, related to the effective demagnetizing factor, and show that it has a logarithmic dependence on the number of domains. Next, we simulate the equations of motion and study the effect of the external field frequency and the disorder on the hysteresis and noise properties. The dynamic hysteresis is very well explained by means of the loss separation theory.Comment: 13 pages, 11 figure

    On the power spectrum of magnetization noise

    Get PDF
    Understanding the power spectrum of the magnetization noise is a long standing problem. While earlier work considered superposition of 'elementary' jumps, without reference to the underlying physics, recent approaches relate the properties of the noise with the critical dynamics of domain walls. In particular, a new derivation of the power spectrum exponent has been proposed for the random-field Ising model. We apply this approach to experimental data, showing its validity and limitations.Comment: 8 pages, 3 .eps figures (elsart.cls style required

    The role of stationarity in magnetic crackling noise

    Full text link
    We discuss the effect of the stationarity on the avalanche statistics of Barkhuasen noise signals. We perform experimental measurements on a Fe85_{85}B15_{15} amorphous ribbon and compare the avalanche distributions measured around the coercive field, where the signal is stationary, with those sampled through the entire hysteresis loop. In the first case, we recover the scaling exponents commonly observed in other amorphous materials (τ=1.3\tau=1.3, α=1.5\alpha=1.5). while in the second the exponents are significantly larger (τ=1.7\tau=1.7, α=2.2\alpha=2.2). We provide a quantitative explanation of the experimental results through a model for the depinning of a ferromagnetic domain wall. The present analysis shed light on the unusually high values for the Barkhausen noise exponents measured by Spasojevic et al. [Phys. Rev. E 54 2531 (1996)].Comment: submitted to JSTAT. 11 pages 5 figure

    A spring-block model for Barkhausen noise

    Full text link
    A simple mechanical spring-block model is introduced for studying magnetization phenomena and in particularly the Barkhausen noise. The model captures and reproduces the accepted microscopic picture of domain wall movement and pinning. Computer simulations suggest that this model is able to reproduce the main characteristics of hysteresis loops and Barkhausen jumps. In the thermodynamic limit the statistics of the obtained Barkhausen jumps follows several scaling laws, in qualitative agreement with the experimental results. The simplicity of the model and the invoked mechanical analogies makes it attractive for computer simulations and pedagogical purposes.Comment: Revtex, 8 pages, 6 figure

    Avalanches and clusters in planar crack front propagation

    Get PDF
    We study avalanches in a model for a planar crack propagating in a disordered medium. Due to long-range interactions, avalanches are formed by a set of spatially disconnected local clusters, the sizes of which are distributed according to a power law with an exponent τa=1.5\tau_{a}=1.5. We derive a scaling relation τa=2τ1\tau_a=2\tau-1 between the local cluster exponent τa\tau_a and the global avalanche exponent τ\tau. For length scales longer than a cross-over length proportional to the Larkin length, the aspect ratio of the local clusters scales with the roughness exponent of the line model. Our analysis provides an explanation for experimental results on planar crack avalanches in Plexiglas plates, but the results are applicable also to other systems with long-range interactions.Comment: 7 pages, 6 figures, accepted for publication in Physical Review

    Loss separation for dynamic hysteresis in magnetic thin films

    Full text link
    We develop a theory for dynamic hysteresis in ferromagnetic thin films, on the basis of the phenomenological principle of loss separation. We observe that, remarkably, the theory of loss separation, originally derived for bulk metallic materials, is applicable to disordered magnetic systems under fairly general conditions regardless of the particular damping mechanism. We confirm our theory both by numerical simulations of a driven random--field Ising model, and by re--examining several experimental data reported in the literature on dynamic hysteresis in thin films. All the experiments examined and the simulations find a natural interpretation in terms of loss separation. The power losses dependence on the driving field rate predicted by our theory fits satisfactorily all the data in the entire frequency range, thus reconciling the apparent lack of universality observed in different materials.Comment: 4 pages, 6 figure

    Wavelet transforms in a critical interface model for Barkhausen noise

    Full text link
    We discuss the application of wavelet transforms to a critical interface model, which is known to provide a good description of Barkhausen noise in soft ferromagnets. The two-dimensional version of the model (one-dimensional interface) is considered, mainly in the adiabatic limit of very slow driving. On length scales shorter than a crossover length (which grows with the strength of surface tension), the effective interface roughness exponent ζ\zeta is 1.20\simeq 1.20, close to the expected value for the universality class of the quenched Edwards-Wilkinson model. We find that the waiting times between avalanches are fully uncorrelated, as the wavelet transform of their autocorrelations scales as white noise. Similarly, detrended size-size correlations give a white-noise wavelet transform. Consideration of finite driving rates, still deep within the intermittent regime, shows the wavelet transform of correlations scaling as 1/f1.51/f^{1.5} for intermediate frequencies. This behavior is ascribed to intra-avalanche correlations.Comment: RevTeX, 10 pages, 9 .eps figures; Physical Review E, to be publishe

    Signature of effective mass in crackling noise asymmetry

    Full text link
    Crackling noise is a common feature in many dynamic systems [1-9], the most familiar instance of which is the sound made by a sheet of paper when crumpled into a ball. Although seemingly random, this noise contains fundamental information about the properties of the system in which it occurs. One potential source of such information lies in the asymmetric shape of noise pulses emitted by a diverse range of noisy systems [8-12], but the cause of this asymmetry has lacked explanation [1]. Here we show that the leftward asymmetry observed in the Barkhausen effect [2] - the noise generated by the jerky motion of domain walls as they interact with impurities in a soft magnet - is a direct consequence of a magnetic domain wall's negative effective mass. As well as providing a means of determining domain wall effective mass from a magnet's Barkhausen noise our work suggests an inertial explanation for the origin of avalanche asymmetries in crackling noise phenomena more generally.Comment: 13 pages, 4 figures, to appear in Nature Physic

    Dynamic hysteresis in Finemet thin films

    Full text link
    We performed a series of dynamic hysteresis measurements on three series of Finemet films with composition Fe73.5_{73.5}Cu1_1Nb3_3Si13.5_13.5B9_9, using both the longitudinal magneto-optical Kerr effect (MOKE) and the inductive fluxometric method. The MOKE dynamic hysteresis loops show a more marked variability with the frequency than the inductive ones, while both measurements show a similar dependence on the square root of frequency. We analyze these results in the frame of a simple domain wall depinning model, which accounts for the general behavior of the data.Comment: 3 pages, 3 figure
    corecore